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The fastest known algorithms for the solution of a large elliptic boundary value problem on a

massively parallel hypercuhe all require O(log(n)) floating point operations and O(Iog(n))

distance-1 communications, ff we define massively parallel to mean a number of processors

proportional to the size n of the problem. The algorithm TPMA (for Totally Parallel Multilevel
Algorithm) that we describe below has, as special cases, four of these'fasialgorkhms. These four

algorithms are PSMG (Parallel Superconvergent Multigrid) of Frederickson and McBryan, Robust

Muldgrid of Hackbusch, the FFT based Spec|ral Algorithm, and Paral/eI Cyctic Reduction. The

algorithm TPMA, when described recursively, has four steps:

(I) Project to a collection of interlaced, coarser problems at the next lower level

(2) Apply TPMA, recursively, to each of these lower level problem, Solving directly at the
lowest level

(3) Interpolate these approximate solutions to the finer grid, and a verage them to form an
approximate soludon on this grid.

(4) Refine this approximate solution with a defect-correction step, using a local approximate
inverse.

Choice of the projection operator P, the interpolation operator Q, and the smoother S determines
the class of problems on which TPMA is most effective. There are special cases in which _e first
three steps produce an exact solution, and the smoother is not needed (e.g. constant coefficient
oeprators).

Key Words: Multilevel algorithm; Multigrid; Cyclic reduction; Spec_'al method
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1: Introduction.

The fa_tc_t known alg(,rithms f,,t the s,,lution of an

elliptic boundary value problem

.4. =., (:.:)

on a massivc.ly parallel hypercul)e, by which we nlean a

hypercube with a number p of processors proportional

to the size n of the problem, are all very closely related

in structure. It is imme(iiately apparent that all pro-

ceed in O(log(n)) stages (or levels) consisting of O(n)

floating point operations executed in parallel and O(p)

parallel communications with a nearest neighb{,r. On
closer examination one observes that in the k th level of

any of these algorithms the problem

A*u * = v' (1.2)

is, in effect, being solved, and that this problem actually

consists in a number of independent and interleaved sub-

problems. It is this observation that we wish to clarify

in the following sections.

The algorithm TPMA (for Totally Parallel Multi-

level Alg,,rithm) that we describe i)el,w has, as special

cases, four of these- fast algorithms. These four algo-

Fig. 1

rithms are PSMG (Parallel Superconvetgent Multigrid)

of Fredcrickson and McBryan, Rol)ust Multigrid of Hack-

busch, the FFT based Spectral Algorithm, and Parallel

Cyclic Reduction. Choice of the projection operator P,

the interpolation operator Qk and the smoothing op-

erat,,r S I' in the alg,,rith,u TPM A determines which of

these particular algorithms is tel)resented. Which algo-

rithm one wishes to use depends on many things, among

them the characteristics of the problem (1.1). What new

algorithms fill the space between these known ones is yet

to be determined.

It is useful, when attempting to understand the al-

gorithm TPMA, to see clearly the intertwined sul)grids

at each of the multiple levels of the algorithm. These are

more easily visualized in the case of plane triangulations,

_and hence we begin with these.

2: Graph Coh)rings and S,hgrids.

The nodes of an arbitrary planar graph can be col-

ored using at most four colors with no two adjacent nodes

having the same color. Fewer colors may suffice. For ex-

ample, the graph in Fig. 1 corresponding to an equilat-

eral triangulation of the plane requires only three colors.

If we connect the nodes of the same color that are a

grapll distance two apart we fi)rm three interlaced sub-

grids, each larger by a factor v_ and rotated, as shown

in Fig. 2. Observe that each subgrid corresponds to a

subgraph ,J" the: square o1"the original graph. This is

equivalent to the statement that nodes connected by an

edge in the subgrid connect points that are separated by

two edges of the original graph.

Similarly, the graph of the familiar five point Lapla-

clan requires only two colors. The two subgrids that

are formed by connecting nodes of like color which are a

graph distance two apart in the original grid are larger

by the factor x/_. Use of this grid offers some advantage

over the triangular grid when computing on a binary

hypercube, for communication distance along each grid

axis remains a power of two as the algorithm descends

through the levels, llyl)ercube communication distance

is therefore bounded by four.
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When using TPMA to solve an elliptic problem dis-

cretized onto an unstructured triangular grid we are able

to generate interlaced s,,bgrids using an imperfect three-

eolori,g, i,t which the number of a, ijaeent n,-lcs of" the

same color is minimized, or an imperfect two-col.ring.

This construction of interlaced subgrids is repeated re-

cursively: each of these sul_gri,ls is a triangulation in its

own right.

Finally, we observe that the graph of the nine-point

Laplacian, although not planar, is col,ruble in four col-

ors. The four interleaved subgrids, each larger by the

factor 2 = vr4, lead to a very high performance imple-

mentation of TPMA on highly parallel hypercubes, and

the CM2 in particular.
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3: TPMA: Totally Parallel Multilevel Algorithm.

Definition of the algorithm TPMA requires specifi-

cation of the two operators qh and pk for every level

0 < k <_ m, and the operators A h and S h for 0 < k < ca.

Consider first the projection operator pk .y* __. 32_-t

which uses the data _* in the equation

..l*_ - r,' (3.1)

to construct the data ¢_-t = P_u _ of the correspond-

ins equation at level k - 1. The easiest example of a

projection operator, P_ = I, is used in some versions of

the algorithm TI'MA. In this case the first step in pro-

jecting equation (3.1) to the interleaved subgrids at level

k - 1 is particularly easy.

S,pp,_e that we haw been able, s_mehow, to con-

struct an approximate solution u *-t in X _-_ to the

equation A_-ta _-_ = ¢_-_ . 'l'hen we will use the

interpolation operator _ to map it into an approximate

solution t=_' = Q_=_-_ of equation (3.1).

The effect of _ is to combine the approximate so-

lutions from all of the interleaved subgrids of a given grid

into one approximate solution on that grid. Except at

the highest level this grid will, in turn, be one of several

interleaved subgrids of a grid at a yet higher level. In

many cases Q_ is best described as an averaging opera-

tor, while in other cases it will simply be the identity.

The er)nvergenee the, ry is partleular;x easy to state

when the two operators _ and I '_ are adjolnt or dual to

each other. This is the situation, for example, when they

arc constructed nsing the Rahigh-Ritz-Calerkin pc,co-

([ I, f _.

In most cases the operator A k-t at level k - 1 is

defined recursively using

A _-' = P_A_Q _, .(3.2)

or, eqnivalently, via the commutative diagram

,,_,k .._.,AS _k

A_-,
Xh-t _._. y_,-,

(3.3)

The task now is to solve the system (3.1) at every

level k. At level k - 0 this is easier than at any other

level, for the original system has been reduced to as many

independent systems as possible. In many cases each

of these system is only a scalar equation, and solution

requires only a division. In any case we will denote the

solution operator by S °.

In general the approximate solution a _ = _u a-t

is not an exact solution to eqn. (3.1), and it is advan-

tageous to use a local approximate inverse Pa to the

operator A _ in a defect- correction step

u_' ,-- _ + P_( _' - A_'u _' ) (3.4)

after interpolation. In some cases the Jacobi operator

(the reciprocal of the diagonal of the operator A _) is

adequate as a defect eorrretion op,'rator .¢_k, h,,t in many

cases it is worthwhile to take into account more of the

structure of A a when constructing S a.



ThealgorithmTPMA that wehave described im-

plicitly above may now be defined explicitly to be a rep-

resentation of the operator 7"t given recarsively by

T t = S_ + (! - StA t)QtTh-'s_ (3.7)

• with T ° = S ° as initial condition. When the four

operators satisfy certain inequalities (see [41 for details)

one can prove that T t is an approximate inverse to A t.

We will see that there are versions of TPMA for

which u t -- Qkut-l is an exact solution to equation

(3.1), rather than just an approximate solution. In this

case the local approximate inverse S t is not needed, or

may be taken to be 0, except at the bottom level k = 0

where we assume that SeA ° = I. Then the recursive

definition of T t reduces to T t - QtTt-_Pk, or the

com,,mtativc diagram

.r t F-' yt

[O' IP t
T*-S

._,_-1 .__. yh-z

0.6)

4: PSMG: Parallel Supereonvergestt M,fltigrld.

When solving an elliptic problem discretized onto a

given grid (or graph) it is useful to have an approximate

solution on a coarser grid, for this may be interpolated

onto the given grid to serve as the initial approxima:"

tion of a defect correction algorithm. This idea leads

one to the classic mMtigrid alg,_rithm, perhaps the most

obvious example of a multilevel algorithm. In maltigrid,

recursively coarser grids are used, with the lowest level

grid having so few points that the corresponding approx-

imate elliptic problem can be solved directly. These al-

gorithms are multilevel, but not totally parallel. In fact,

almost all of the processors are standing idle almost all

of the time. Isn't there something useful that these idle

processors couhl do to further the solution?

This is the question that Oliver McBryan and the

author asked themselves, and that led them to develop

the totally parallel multilevel-'algorithm PSMG [4,5].

The essential idea of PSMG is to project the given

problem onto all of the available coarser grids, forming

enough lower level problems to keep all of the processors

busy all of the time. This is done recursivdy, as in or-

dinary multigrid. The payoff is much C'tster convergence

at no added computational cost. In fact, the program is

somewhat simpler on the Connection Machine, for it is

no longer necessary to turn more of the processors offat

every step.

5: The FFT Based Spectral Method.

The classical spectral algorithm for the solution of

a e,_nstant coeglcient elliptic problem on a rectangMar

domain has three steps: take the FFT of the problem

data v, divide this by the transform of the differential

operator, and transform back. We may, however, equally

well describe it as an example of the algorithm TPMA

in which the operator P_ is given by

1

P'0 = z ,,t") (s.0

when O_<(i rood 2m-t+1 )<2 "*-l*,and

1 o) (s.2)

otherwise. This three point operator works on points a

distance 2m-t apart, which are the p,,ints of the _,,bgrid

at that level. This is the operation of pt in the first

dimension, and is followed by a pair of operators trans-

verse to these in each of the other dimensions. Q_ is the

adjoint of pt, and S _ = 0 except at the lowest level,

where S ° is the reciprocal of the fourier transform of the

differential operator.

An important observation is that the FoiJrier mul-

tipliers wl, l need be computed only once, on the high-

est level. Those coefficients needed at the next lower

level are a Hamming distance at most two away, and are

moved in at the start of the comp,,tation at that level.

For a more detailed discussion of FFT implementations

on highly parallel computers see the recent papers of

Kamin and Adams [1] and Schwarztrauber et. al. [9].

6: Parallel Cyclic Reduction.

The cyclic reduction (odd-even reduction) algo-

rithm of B,,neman [2] and lIockney [6] for solving a tridi-

agonal, or block tridiagonal, system of equations of the

form

(A tt)i = ai,,-lu,-x + u, + a_,,+x_+t -- vi (6.1)

is another example of the algorithm TPMA. Here the

projection operator pa, is defined by

t , (6a)pk vi = --ahi,t-j111-j zr VJi -- G i,i+j i+j,

where j denotes 2 ''-k, and the lower-level operators A t

are defined, recursively, by

Ah-, = pI, A h (6.3)

In the standard version of tl, i_ algorithm, optimal on a

sequential computer, the number of equations reduces

by a factor of two at every step. After log(n) steps,



butonlyO(n)operations,a single system remains, and

this is solved directly. Log(n) stages of back substitution

remain to be done before the solution is known over the

whole army.

The totally parallel version of this algorithm (Hock-

hey and Jessope [7]) projects at every stage onto all

nodes of the grid u._ing the same projection operat-r

(6.2). The advantage is that the solution is known at

all nodes alter the first log(n) stages. It is just twice as

fast, therefore, as ordinary cyclic reduction on a suffi-

ciently parallel computer. This is the version of cyclic

reduction that is a special ease of TPMA. To see this,

observe that eqn. (6.3) is equivalent to eqn. (3.2) with

Qh __. [, which i_ what pnrnllel cyclic reduction requires.

Because Interpolation is exact, we take the '['I'MA op-
erator S h = 0 in this case. l_or a fuller discussion of

parallel cyclic reduction and related direct multilevel al-

gorithms the recent paper of Swartztrauber and Sweet

[8] is recommended.

Sunlmnry.

We describe ti,-,dg,_rithm TI'MA ('r.tally Pnrall,'l

Multilevel Algorithm) and demonstrate that three of the

fastest known algorithms for solving an elliptic boundary

value problem on a highly parallel hypercube, such as the

Connection Machine of Thinking Machines Corporation,

are special cases of TPMA. These are the FFT based

spectral algorithm, parallel cyclic reduction, and PSMG.

Each of these appears to be optimal in certain situations.

Since all arc special cases of the same algorithm TPMA

it may be possible to combine the advantages, and form

hybrid algorithms that are better than any of these in

particular problem domains.
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